

MATHEMATICAL SCIENCES

Paper - III

1. The series $1+\frac{1}{2^{2}}-\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}-\cdots$ ∞ is
(A) convergent
(B) divergent
(C) oscillatory
(D) conditionally convergent
2. If f is defined by $\mathrm{f}(x)=x^{2} \sin \frac{1}{x}$, if $x \neq 0$

$$
=0, \quad \text { if } x=0
$$

then
(A) f is differentiable at $x=0$ but $\lim _{x \rightarrow 0} f^{\prime}(x) \neq f^{\prime}(0)$
(B) f is differentiable at $x=0$ and $\lim _{x \rightarrow 0} f^{\prime}(x)=f^{\prime}(0)$
(C) f^{\prime} is continuous at $x=0$ and $f^{\prime}(0)=0$
(D) f^{\prime} is not continuous at $x=0$ and $f^{\prime}(0)=1$
3. Which one of the following statements is NOT true?
(A) Every continuous function is integrable
(B) If $|f|$ is integrable on $[a, b]$, then f is integrable on [a, b]
(C) If f is continuous in $[a, b]$, then f is bounded in [a, b]
(D) If f is differentiable at a point, then it is necessarily continuous at that point
4. If $[x]$ denotes the greatest integer less than or equal to x , then $\int_{0}^{3}[x] \mathrm{d} x=$
(A) 3
(B) $\frac{9}{2}$
(C) 2
(D) 1
5. Let f be defined by
$\mathrm{f}(x)=\frac{1}{2^{\mathrm{n}}}$, for $\frac{1}{2^{\mathrm{n}+1}}<x<\frac{1}{2^{\mathrm{n}}} ; \ldots, \mathrm{n}=0,1,2, \ldots$. and $f(0)=0$. Then consider the following statements
I. f is integrable on $[0,1]$
II. f has finite number of discontinuities in $[0,1]$
III. f is monotonically increasing and bounded on $[0,1]$
IV. f is continuous on $[0,1]$
(A) I, II and III are true
(B) I and II are true
(C) III and IV are true
(D) I and III are true
6. Assertion (A) : If $\mathrm{f}(x)=\frac{1}{(x-1)^{2}}$, then

$$
\int_{0}^{2} \mathrm{f}(x) \mathrm{d} x=\left[\frac{-1}{x-1}\right]_{0}^{2}=-2
$$

is false
Reason (R) : $\quad f^{\prime}(x)$ is not bounded in [0, 2]

Then, which one of the following is true?
(A) (A) is true but (R) is false
(B) Both (A) and (R) are false
(C) Both (A) and (R) are true but (R) is not a correct explanation of (A)
(D) Both (A) and (R) are true and (R) is a correct explanation for (A)
7. Consider the sequences (List I) and the properties of sequences (List II).

List I

List II

I. $\left\{1+(-1)^{n}\right\}$
II. $\left\{n^{2}\right\}$

1. Oscillates infinitely
2. Converges to the limit 1
III. $\left\{n(-1)^{n}\right\}$
3. Diverges to $+\infty$
IV. $\left\{1+\frac{1}{n}\right\}$
4. Oscillates finitely

Which one of the following options is a correct match?

	I	II	III	IV
(A)	4	3	1	2
(B)	1	2	3	4
(C)	1	4	3	2
(D)	4	3	2	1

8. The eigen values of the matrix $\left[\begin{array}{lc}3 & 12 \\ 6 & 2\end{array}\right]$ are
(A) $\{3,2\}$
(B) $\{1,1\}$
(C) $\{11,-6\}$
(D) $\{6,-11\}$
9. The inverse of the matrix $A=\left[\begin{array}{lll}2 & 1 & 4 \\ 0 & 5 & 3 \\ 0 & 0 & 4\end{array}\right]$ is
(A) $\frac{1}{40}\left(\mathrm{~A}^{2}-11 \mathrm{~A}-38 \mathrm{I}\right)$
(B) $\frac{1}{40}\left(\mathrm{~A}^{2}-11 \mathrm{~A}+38 \mathrm{I}\right)$
(C) $\frac{1}{40}\left(\mathrm{~A}^{2}+11 \mathrm{~A}-38 \mathrm{I}\right)$
(D) $\frac{1}{40}\left(\mathrm{~A}^{2}+11 \mathrm{~A}+38 \mathrm{I}\right)$
10. If $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$, then the number of linearly independent eigen vectors of A corresponding to the eigen value 3 is
(A) 0
(B) 1
(C) 2
(D) infinite
11. The rank of the matrix
$A=\left[\begin{array}{rrrr}2 & -1 & 3 & -1 \\ -1 & 3 & 2 & -1 \\ 0 & 5 & 7 & -3 \\ 3 & 1 & -4 & 1\end{array}\right]$ is
(A) 1
(B) 2
(C) 3
(D) 4
12. Which one of the following is the orthonormal basis for $\mathbb{R}^{3}(\mathbb{R})$?
(A) $\left\{\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)\right\}$
(B) $\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)\right\}$
(C) $\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\right\}$
(D) $\left\{\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right),\left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\right\}$
13. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation of the vector space V onto the vector space W and if dim. $\mathrm{W}=4$ and dim. $\operatorname{Ker} \mathrm{T}=2$, then $\operatorname{dim} . \mathrm{V}=$
(A) 6
(B) 2
(C) 8
(D) 12
14. Let V be an n dimensional vector space over the field \mathbb{R} and $B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a basis for $V(\mathbb{R})$. Then B is called an orthonormal basis for V if
(A) $\left(\alpha_{i}, \alpha_{j}\right)=0$ for $i \neq j, 1 \leq i, j \leq n$
(B) $\left(\alpha_{i}, \alpha_{i}\right)=1$ for $1 \leq i \leq n$
(C) Both the options (A) and (B) hold
(D) Either option (A) or option (B) hold
15. $\int_{\complement} \frac{1}{\mathrm{z}^{2}+4} \mathrm{dz}, \leftharpoonup:|\mathrm{z}-\mathrm{i}|=2$ described in the positive sense, is equal to
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$
16. For the function $\mathrm{f}(\mathrm{z})=(\mathrm{z}+1) \cdot \sin \frac{1}{(\mathrm{z}-2)}$, the point $z=2$ is
(A) an essential singularity
(B) a pole of order one
(C) a removable singularity
(D) an analytic point
17. The sum of the residues at the poles of the function $f(z)=\frac{z^{2}+1}{z^{2}-2 z}$ is
(A) 2
(B) 3
(C) 4
(D) 6
18. The Harmonic conjugate of the function $u(x, y)=2 x-2 x y$ is
(A) $x^{2}+y^{2}-4 y$
(B) $x^{2}-2 x y+y^{2}$
(C) $2 x^{2}+y^{2}-3 x$
(D) $x^{2}-y^{2}+2 y$
19. The Laurent series expansion of
$f(z)=\frac{z^{2}-1}{z^{2}+5 z+6}$ about $z=0$ in the region $2<|z|<3$ is
(A) $1+\frac{2}{\mathrm{z}}\left(1+\frac{2}{\mathrm{z}}+\frac{2^{2}}{\mathrm{z}^{2}}+\ldots\right)-\frac{5}{3}\left(1-\frac{\mathrm{z}}{3}+\frac{\mathrm{z}^{2}}{3^{2}}-\ldots\right)$
(B) $1-\frac{3}{\mathrm{z}}\left(1-\frac{2}{\mathrm{z}}+\frac{2^{2}}{\mathrm{z}^{2}}-\ldots\right)+\frac{5}{3}\left(1+\frac{\mathrm{z}}{3}-\frac{\mathrm{z}^{2}}{3^{2}}+\ldots\right)$
(C) $1+\frac{3}{\mathrm{z}}\left(1-\frac{2}{\mathrm{z}}+\frac{2^{2}}{\mathrm{z}^{2}}-\frac{2^{3}}{\mathrm{z}^{3}}+\ldots\right)-\frac{8}{3}\left(1-\frac{\mathrm{z}}{3}+\frac{\mathrm{z}^{2}}{3^{2}}-\ldots\right)$
(D) $1+\frac{3}{\mathrm{z}}\left(1+\frac{2}{\mathrm{z}}-\frac{2^{2}}{\mathrm{z}^{2}}+\frac{2^{3}}{\mathrm{z}^{3}}-\ldots\right)-\frac{8}{3}\left(1-\frac{\mathrm{z}}{3}-\frac{\mathrm{z}^{2}}{3^{2}}-\ldots\right)$
20. An example of an integral domain which is not a field is
(A) $(\mathrm{Q},+, \cdot)$
(B) $(\mathbb{Z},+, \cdot)$
(C) $\left(\mathbb{Z}_{6},{ }_{6},{ }_{6}\right)$
(D) $\left(\mathbb{Z}_{7},+_{7},{ }_{7}\right)$
21. If ϕ is the Euler function, then $\phi(\phi(1001))=$
(A) 720
(B) 360
(C) 224
(D) 192
22. If 6 distinct objects are in a row, then the number of possible derangements of these objects is
(A) 760
(B) 360
(C) 265
(D) 125
23. Which one of the following polynomials is irreducible over the field $\left(\mathbb{Z}_{7},+_{7},{ }_{7}\right)$?
(A) $x^{2}+3 x-2$
(B) $x^{2}+3$
(C) $x^{2}+4 x+2$
(D) $x^{2}+5$
24. If Q is the field of rational numbers, then the order of the Galois group of the polynomial $x^{4}+1 \in Q[x]$ is
(A) 2
(B) 4
(C) 6
(D) 8
25. Let (x, τ) be a topological space and A, B be subsets of X. Then which one of the following statements is true ?
(A) $\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cap \overline{\mathrm{B}}$
(B) $\overline{\mathrm{A}-\mathrm{B}}=\overline{\mathrm{A}}-\overline{\mathrm{B}}$
(C) $\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$
(D) $\overline{\mathrm{A}^{\prime}}=\left(\overline{\mathrm{A}}^{1}\right)$
(Here \bar{A} is the closure of A and A^{\prime} is the complement of A)
26. Let X be an infinite set and $\tau=\{\mathrm{U} \subseteq \mathrm{X} \mid \mathrm{U}=\phi$ or $\mathrm{X}-\mathrm{U}$ is finite $\}$. Then the topological (X, τ) is a
(A) Regular space
(B) Normal space
(C) Hausdorff space
(D) T_{1} space
27. A compact Hausdorff topological space is
(A) T_{3} space but not normal
(B) normal
(C) discrete
(D) completely normal
28. The number of solutions of the equation $5 x-6=0$ in the ring $\left(\mathbb{Z}_{10},+_{10},{ }_{10}\right)$ of integers modulo 10 is
(A) 0
(B) 1
(C) 3
(D) 5
29. If $n(A)=7$, then the number of bijections from A to A such that $f(x)=x$ holds exactly for 3 elements of A is
(A) 35
(B) 315
(C) 1520
(D) 2520
30. The particular integral of the equation $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$ is
(A) $\sin x+x \log |\cos x|$
(B) $-x \cos x+\sin x \log |\sin x|$
(C) $x \sin x-\cos x \log |\sin x|$
(D) $x \sin x+\cos x \log |\sec x|$
31. The Wronskian of the two functions $\phi_{1}(x)=x^{2}$ and $\phi_{2}(x)=x|x|$ on \mathbb{R} is
(A) -1
(B) 0
(C) 1
(D) 2
32. The solution $\binom{y_{1}}{y_{2}}$ for the system of equations $\begin{aligned} & y_{1}^{1}=4 y_{1}-3 y_{2} \\ & y_{2}^{1}=2 y_{1}-y_{2}\end{aligned}$ is

$$
y_{2}^{1}=2 y_{1}-y_{2}
$$

(A) $c_{1} e^{x}\binom{1}{1}+c_{2} e^{2 x}\binom{3}{2}$
(B) $\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}\binom{1}{1}+\mathrm{c}_{2} \mathrm{e}^{-2 \mathrm{x}}\binom{3}{2}$
(C) $\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}\binom{1}{0}+\mathrm{c}_{2} \mathrm{e}^{-2 \mathrm{x}}\binom{2}{1}$
(D) $c_{1} e^{x}\binom{1}{0}+c_{2} e^{-2 x}\binom{2}{3}$
33. Let f be defined on the rectangle $R:|x| \leq 1,|y| \leq 1$ by

$$
\begin{aligned}
f(x, y) & =0, \text { if } x=0,|y| \leq 1 \\
& =2 x, \text { if } 0<|x| \leq 1,-1 \leq y<0 \\
& =2 x-\frac{4 y}{x}, \text { if } 0<|x| \leq 1,0 \leq y \leq x^{2} \\
& =-2 x, \text { if } 0<|x|<1, x^{2} \leq y \leq 1
\end{aligned}
$$

Then which one of the following is NOT true ?
(A) f is continuous on \mathbb{R}
(B) $|f(x, y)| \leq 2$ on \mathbb{R}
(C) f satisfies the Lipschitz's condition on \mathbb{R}
(D) $|f(x, y)| \leq 1$ on \mathbb{R}
34. The general solution of the partial differential equation
$\left(x^{2}-y^{2}-y z\right) p+\left(x^{2}-y^{2}-2 x\right) q=z(x-y)$ with the usual notation, is
(A) $f\left(x-y-z, \frac{x^{2}-y^{2}}{z^{2}}\right)=0$
(B) $f\left(x-y+z, \frac{x^{2}+y^{2}}{z^{2}}\right)=0$
(C) $f\left(x-y+z, \frac{x^{2}-y^{2}}{z}\right)=0$
(D) $f\left(x+y-z, \frac{x^{2}+y^{2}}{2 z^{2}}\right)=0$
35. The particular integral of the equation $\left(D^{2}-D^{1}\right) z=2 y-x^{2}$, with the usual notation, is
(A) $x y$
(B) $x^{2} y$
(C) $x y^{2}$
(D) $x^{2} y-y^{2}$
36. The general solution of the equation $(y+z x) p-(x+y z) q=x^{2}-y^{2}$, with the usual notation, is
(A) $F\left(x^{2}-y^{2}-z^{2}, x+y z\right)=0$
(B) $F\left(x^{2}+y^{2}+z^{2}, x+z\right)=0$
(C) $F\left(x^{2}+y^{2}-z^{2}, x y+z\right)=0$
(D) $F\left(x^{2}-y^{2}-z^{2}, x y-z\right)=0$
37. If $\mathrm{h}=1$ and Δ stands for the forward difference operator, then $\Delta^{3}[(1-x)(1-2 x)$ $(1-3 x)]=$
(A) -36
(B) -24
(C) 12
(D) 18
38. The estimate of error in computing $\sin 52^{\circ}$ from the following tabular data, using Newton-Gregory forward interpolation formula is
$x \quad: \quad 45^{\circ} \quad 50^{\circ} \quad 55^{\circ} \quad 60^{\circ}$
$y=\sin x: 0.70710 .76600 .81920 .8660$
(A) $(0.29) \times 10^{-4}$
(B) $(0.39) \times 10^{-4}$
(C) $(0.48) \times 10^{-4}$
(D) $(0.54) \times 10^{-4}$
39. Given that $y^{\prime}-y^{2}=0, y(0)=1$, then the value of $y(0.2)$, evaluated by Euler's forward method with $\mathrm{h}=0.1$, correct to 3 decimal places, is
(A) 1.143
(B) 1.176
(C) 1.221
(D) 1.265
40. The integral that should be minimized to find the curve joining the points $\left(x_{1}, y_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in the plane, that yields a surface of revolution with minimum area when the curve is rotated about the X - axis, is
(A) $\int_{x_{1}}^{x_{2}} 2 \pi y \sqrt{1+y^{\prime 2}} d x$
(B) $\int_{x_{1}}^{x_{2}} \frac{2 \pi y}{\sqrt{1+y^{\prime 2}}} d x$
(C) $\int_{x_{1}}^{x_{2}} 2 \pi x \sqrt{1+y^{\prime 2}} d x$
(D) $\int_{x_{1}}^{x_{2}} 2 \pi x y \sqrt{1+y^{\prime 2}} d x$
41. A solution of the integral equation $\mathrm{y}(x)=\frac{1}{1+x^{2}}-\int_{0}^{x} \frac{t}{1+x^{2}} y(\mathrm{t}) \mathrm{dt}$ is
(A) $y(x)=\frac{1}{\sqrt{1+x^{2}}}$
(B) $y(x)=\frac{x}{\left(1+x^{2}\right)}$
(C) $y(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}}$
(D) $y(x)=\frac{1}{\left(1-x^{2}\right)^{2}}$
42. The number of degrees of freedom, in the case of a hoop rolling down an inclined plane without slipping, is
(A) 1
(B) 2
(C) 3
(D) 4
43. If a force $\overline{\mathrm{F}}=\overline{\mathrm{F}}_{\mathrm{x}} \bar{i}+\overline{\mathrm{F}}_{\mathrm{y}} \overline{\mathrm{j}}$, where the components of force $\overline{\mathrm{F}}_{\mathrm{x}}$ and $\overline{\mathrm{F}}_{\mathrm{y}}$ are functions of x and y, is conservative then
(A) $\frac{\partial \mathrm{F}_{\mathrm{y}}}{\partial y}-\frac{\partial \mathrm{F}_{\mathrm{x}}}{\partial y}=0$
(B) $\frac{\partial \mathrm{F}_{\mathrm{y}}}{\partial x}-\frac{\partial \mathrm{F}_{\mathrm{x}}}{\partial \mathrm{y}}=0$
(C) $\frac{\partial \mathrm{F}_{\mathrm{y}}}{\partial y}-\frac{\partial \mathrm{F}_{\mathrm{x}}}{\partial x}=0$
(D) $\frac{\partial \mathrm{F}_{\mathrm{y}}}{\partial \mathrm{x}}+\frac{\partial \mathrm{F}_{\mathrm{x}}}{\partial \mathrm{x}}=0$
44. A particle of mass moves along the curve given by $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ with $0 \leq \theta \leq 2 \pi$. Then the kinetic energy of that particle is
(A) $\mathrm{ma}^{2} \dot{\theta}^{2}(1-\cos \theta)$
(B) $\frac{1}{2} \mathrm{ma}^{2}(1-\cos \theta)$
(C) $\mathrm{ma}^{2}(1-\cos 2 \theta)$
(D) $\frac{1}{2} m a^{2}(1-\cos \theta) \dot{\theta}^{2}$
45. The eigen values of the integral equation $y(x)=\lambda \int_{0}^{2 \pi} \sin (x+\mathrm{t}) y(t) d t$ are
(A) $\pm \frac{1}{2 \pi}$
(B) $\pm \frac{3}{2 \pi}$
(C) $\pm \frac{2 \pi}{3}$
(D) $\pm \frac{1}{\pi}$
46. Average strength of eleven members is 11. Average strength of first six members is $\mathbf{1 0 . 5}$. Average strength of last six members is 11.5 . The value of the sixth member is
(A) 10.5
(B) 11.5
(C) 11.0
(D) 10.0
47. Let A and B be two events such that $P(A)=0.5, P(B)=0.4$ and $P(A \cup B)=0.6$. Then $P(A \cap B)$ is
(A) 0.9
(B) 0.5
(C) 0.1
(D) 0.3
48. Which of the following is NOT a characteristic function?
(A) $e^{-|t|}$
(B) $\mathrm{e}^{-\mathrm{t}^{3}}$
(C) $\mathrm{e}^{-t^{2}}$
(D) $\frac{1}{1+\mathrm{t}^{2}}$
49. Identify the correct statement
(A) Almost sure convergence implies convergence in probability
(B) Convergence in distribution always implies convergence in probability
(C) Weak law of large numbers implies strong law of large numbers
(D) Central limit theorem always implies $r^{\text {th }}$ mean convergence
50. With usual notations $p_{i i}{ }^{(n)}>0$ when $n=k$, $2 k, 3 k, \ldots$ then k is called
(A) Sampling Interval
(B) Period
(C) Recurrent
(D) Transient
51. If $\lim _{n \rightarrow \infty} p_{i i}^{(n)}=p$, then the value of p lies in
(A) $[0,1]$
(B) $(0,1)$
(C) $[0, \infty)$
(D) $[-1,+1]$
52. The Markov chain representing number of calls coming to a cell phone per day has a
(A) finite sample space
(B) countable sample space
(C) both (A) and (B)
(D) infinite sample space
53. Which of the following is a leptokurtic distribution?
(A) normal
(B) student -t
(C) exponential
(D) uniform
54. The mean of a binomial variate is 4 and its variance is 3 . What is its mode?
(A) 3
(B) 5
(C) 4
(D) 6
55. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid r.v.s following Cauchy distribution with location 0 and scale 1. Then the distribution of $\bar{X}=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / n$ is
(A) normal with mean 0 and variance 1
(B) asymptotically standard normal as $\mathrm{n} \rightarrow \infty$
(C) exactly Cauchy with location 0 and scale 1
(D) not well defined
56. When testing null hypothesis $\mathrm{H}_{0}: \mu=\mu_{0}$ in case of normal population with known variance against two sided alternative, the likelihood ratio tests are same as the corresponding
(A) MP test
(B) UMPU test
(C) UMP test
(D) Non-parametric test
57. If $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a random sample from $U(0, \theta)$ then the maximum likelihood estimator of θ is
(A) sample mean
(B) sample median
(C) sample minimum
(D) sample maximum
58. An unbiased estimator need not be
(A) consistent
(B) unique
(C) both (A) and (B)
(D) neither (A) nor (B)
59. To compare the efficiency of two statistical tests we use the following function
(A) Likelihood function
(B) OC function
(C) Probability function
(D) Density function
60. Which of the following is used as a test for goodness of fit?
(A) t-test
(B) F-test
(C) sign test
(D) Kolmogorov - Smirnov test
61. In ANOVA two way classification with 6 treatments and 5 replicates, the error degrees of freedom is
(A) 18
(B) 19
(C) 20
(D) 21
62. The range of regression coefficients is
(A) $[-1,+1]$
(B) $(-\infty,+\infty)$
(C) $(-1,+1)$
(D) $[-\infty,+\infty]$
63. In ANOVA we use the following theorem
(A) Baye's theorem
(B) Factorization theorem
(C) Addition theorem
(D) Cocrran's theorem
64. Logistic regression model can be used when the data is \qquad data.
(A) nominal
(B) proportions
(C) logarithmic
(D) interval
65. The following technique is used for clustering the observations
(A) Dendogram
(B) Stemleaf diagram
(C) Histogram
(D) Pie chart
66. Let $X=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{p}\right)$ be multivariate normal random variable. Then which of the following is NOT true ?
(A) All marginal variables are univariate normal distribution
(B) All linear combinations of marginal variables have univariate normal distribution
(C) If any two marginal variables are uncorrelated then they are not independent
(D) The sub vector $\left(X_{1}, X_{2}, X_{3}\right)$ has a trivariate normal distribution
67. Similarity between pairs of variables is measured by the
(A) correlation coefficient
(B) product moment correlation coefficient
(C) rank correlation coefficient
(D) coefficient of variation
68. In the usual notation, suppose $M=X^{\prime} X$, where $X(m \times p)$ follows $N_{p}(0, \Sigma)$. Then the distribution of M is
(A) $W_{p}(m, \Sigma)$
(B) $W_{p}(m-1, \Sigma)$
(C) $\mathrm{W}_{\mathrm{p}}(\mathrm{m}, \mathrm{l})$
(D) $W_{p}(p, \Sigma)$
69. The sample size required when the population is perfectly homogeneous is
(A) 1
(B) 100
(C) N
(D) ∞
70. If in a population the observations are heterogeneous between the groups and homogeneous with in the group, then the following method of sample design is used.
(A) simple random sampling
(B) cluster sampling
(C) stratified random sampling
(D) systematic sampling
71. In a LSD the standard error of the difference between two treatment means, none of which corresponds the missing value is given by
(A) $\mathrm{S}_{\mathrm{E}} \sqrt{\frac{\mathrm{m}}{2}}$
(B) $\mathrm{S}_{\mathrm{E}} \sqrt{\frac{2}{\mathrm{~m}}}$
(C) $\mathrm{S}_{\mathrm{E}}^{2} \sqrt{\frac{\mathrm{~m}}{2}}$
(D) $\mathrm{S}_{\mathrm{E}}^{2} \sqrt{\frac{2}{\mathrm{~m}}}$
72. In the usual notation the sum of squares due to any factorial effect is
(A) $\frac{[]^{2}}{\sum \gamma_{i} \mathrm{c}_{\mathrm{i}}^{2}}$
(B) $\frac{[]^{2}}{\sum \gamma_{\mathrm{i}}^{2} \mathrm{c}_{\mathrm{i}}}$
(C) $\frac{[]^{2}}{\sum \gamma_{i}^{2}}$
(D) $\frac{[]^{2}}{\sum \gamma_{i} c_{i}}$
73. The failure time distribution which is having constant hazard rate is
(A) normal
(B) exponential
(C) uniform
(D) log normal
74. The following method is used for obtaining the system size distribution of a M/G/1 queuing model
(A) embedded Markov chain technique
(B) cluster method
(C) branch and bound method
(D) simplex method
75. For the following LPP

Maximize: $\mathrm{z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}$
Subject to $x_{1}+x_{2} \geq 1 ; x_{1}+2 x_{2} \leq 10$
$x_{2} \leq 4, x_{1} \geq 0, x_{2} \geq 0$
(A) optimum solution is unique
(B) optimum solution exist but not unique
(C) optimum solution is unbounded
(D) it can be solved using calculus with out differentiation

Space for Rough Work

Space for Rough Work

Space for Rough Work

