

CHEMICAL SCIENCES

Paper - III

1. Which among the following are wide spread sources of acid rain ?
(A) Nitrogen oxides
(B) Carbon dioxide
(C) Water vapour
(D) Carbon monoxide
2. An antidepressant with selective serotonin reuptake inhibition is
(A) Fluoxetin
(B) Imipramine
(C) Tranylcypromine
(D) Iproniazid
3. Nano particles of $C d S$ undergo aggregation leading to change in absorption
(A) Redshift
(B) Blueshift
(C) No change
(D) Redshift and blueshift
4. Photochemical reactions carried out in zeolitic layer falls under the category of
(A) Silicon - Aluminium catalysis
(B) Sodium - Silicon driven chemistry
(C) Supramolecular photochemistry
(D) Supramolecular catalysis
5. Identify the correct energy order of orbitals in N_{2}
(A) $\pi 2 \mathrm{P}_{\mathrm{y}}, \pi 2 \mathrm{P}_{\mathrm{z}}<\sigma 2 \mathrm{P}_{\mathrm{x}}$
(B) $\pi 2 \mathrm{P}_{\mathrm{y}}, \pi 2 \mathrm{P}_{\mathrm{z}}>\sigma 2 \mathrm{P}_{\mathrm{x}}$
(C) $\pi 2 \mathrm{P}_{\mathrm{y}}, \pi 2 \mathrm{P}_{\mathrm{z}} \gg \sigma 2 \mathrm{P}_{\mathrm{x}}$
(D) $\pi 2 \mathrm{P}_{\mathrm{y}}, \pi 2 \mathrm{P}_{\mathrm{z}}=\sigma 2 \mathrm{P}_{\mathrm{x}}$
6. Consequent to the positron emission from a nuclide, the N/P ratio
(A) decreases
(B) increases
(C) does not change
(D) changes abruptly
7. The Hamiltonian for the internal motion of a hydrogen like atom is given by
(A) $\frac{-\hbar^{2}}{2 \mu} \nabla^{2}-\frac{\mathrm{Ze}^{2}}{4 \pi \epsilon_{0} r}$
(B) $\frac{-\hbar^{2}}{2 \mu} \nabla^{2}+\frac{\mathrm{Ze}^{2}}{4 \pi \epsilon_{0} r}$
(C) $\frac{-\hbar^{2}}{2 \mu} \nabla^{2}$
(D) $\frac{-\hbar^{2}}{2 \mu} \nabla^{2}+1 / 2 k x^{2}$
8. The correct statements among the following are :
1) Angular momenta of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s orbitals are same
2) Energies of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s orbitals are same
3) Angular momenta of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s orbitals are different
4) Energies of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s orbitals are different
(A) 1,2
(B) 2,3
(C) 3,4
(D) 1, 4
9. The correct name of the following compound is

(A) 6-Chloro-7-methyInonanol
(B) 6-Chloro-7-methyInonenal
(C) 6-Chloro-7-methyInonenol
(D) 6-Chloro-7-methyInonanal
10. The major product in the following reaction is

$\xrightarrow{\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}} \mathrm{X}$
(A)

(B)

(C)

(D)

11. Which of the following has the highest Pauling's electronegativity value?
(A) Be
(B) Mg
(C) Ca
(D) Ba
12. The perturbation Hamiltonian $\mathrm{H}^{(1)}$, for the first order correction to the ground-state energy for a particle in a box with a variation in the potential $v=-\epsilon \sin (\pi x / L)$ is given by
(A) $-\in \sin (\pi x / L)$
(B) $\in^{2} \sin ^{2}(\pi x / L)$
(C) $\in^{3} \sin ^{3}(\pi x / L)$
(D) \in^{3}
13. A particle of mass ' m ' is confined between two walls of a box at $x=0$ and $x=2 L$. The potential energy is zero inside this one dimensional box but rises abruptly to infinity at the walls. The energy of this particle (E) is given by
(A) $\frac{\mathrm{n}^{2} \mathrm{~h}^{2}}{8 \mathrm{~mL}^{2}}, \mathrm{n}=1,2 \ldots$
(B) $\frac{n^{2} h^{2}}{32 m L^{2}}, n=1,2 \ldots$
(C) $\frac{n^{2} h^{2}}{16 \mathrm{~mL}^{2}}, n=1,2 \ldots$
(D) $\frac{\mathrm{n}^{2} \mathrm{~h}^{2}}{18 \mathrm{~mL}^{2}}, \mathrm{n}=0,1,2 \ldots$
14. The HOMO-LUMO gap in the following four compounds from 1 to 4.

(A) Increases
(B) Increase and then decrease
(C) Decrease and then increase
(D) Decreases
15. The major product in the following reaction is

(A) $\mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
(B) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}_{2} \mathrm{H}$
(C) $\mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}$
(D) $\mathrm{CH}_{3} \mathrm{CHOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}$
16. Assertion (A) : The bond angle in NF_{3} is less than that in NH_{3}.

Reason (R) : The high electronegativity of F pulls the bonding electrons in NF_{3} further away from N and a greater distortion is caused.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true but R is not the correct explanation of A
(C) A is true but R is false
(D) A is false but R is true
17. Which of the following is associated with zero field splitting and Kramer's degeneracy?
(A) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(B) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
18. The energies E_{+}of bonding and E_{-}of antibonding orbitals of a homonuclear diatomic molecule are given by the secular determinant

$$
\left|\begin{array}{cc}
\alpha-E & \beta-E S \\
\beta-E S & \alpha-E
\end{array}\right|
$$

The solutions of this equations are
(A) $\mathrm{E}_{ \pm}=\frac{\alpha \mp \beta}{\mathrm{S}}$
(B) $E_{ \pm}=\frac{\alpha \mp \beta}{1-S}$
(C) $E_{ \pm}=\frac{\alpha \beta}{1 \pm S}$
(D) $E_{ \pm}=\frac{\alpha \pm \beta}{1 \pm S}$
19. Match the following

List - I

List - II
l. Orbital angular momentum quantum number
II. Magnetic quantum
2. 1 number
III. Spin quantum
number
IV. Total angular momentum
4. S quantum number

1234
(A) I II III IV
(B) I III II IV
(C) II I IV III
(D) III IV I II
20. Which of the following is isolobal with $\mathrm{Mn}(\mathrm{CO})_{5}$?
(A) CH
(B) CH_{2}
(C) CH_{3}
(D) CH_{4}
21. The quadrupole nucleus among the following is :
(A) ${ }^{1} \mathrm{H}$
(B) ${ }^{12} \mathrm{C}$
(C) ${ }^{31} \mathrm{P}$
(D) ${ }^{35} \mathrm{Cl}$
22. Which one of the following spin wavefunctions $\left(\psi_{\text {spin }}\right)$ is antisymmetric ?
(A) $\psi_{\text {spin }}=[\alpha(1) \beta(2)-\beta(1) \alpha(2)]$
(B) $\psi_{\text {spin }}=\beta(1) \beta(2)$
(C) $\psi_{\text {spin }}=\alpha(1) \alpha(2)$
(D) $\psi_{\text {spin }}=[\alpha(1) \beta(2)+\beta(1) \alpha(2)]$
23. According to HMO theory, the possible energy levels for ethylene in terms of coulombic (α) and exchange (β) integrals are
(A) $(\alpha+\beta)$ and $(2 \alpha+\beta)$
(B) $(\alpha+\beta)$ and $(\alpha-2 \beta)$
(C) $(\alpha+2 \beta)$ and $(\alpha-2 \beta)$
(D) $(\alpha+\beta)$ and $(\alpha-\beta)$
24. Atenolol is used in the treatment of
(A) Hypertension
(B) Hyperlipidemia
(C) Depression
(D) Schizophrenia
25. Fluconazole is
(A) Antibacterial
(B) Antifungal
(C) Antimalarial
(D) Anticancer
26. Match the following :

Catalyst

Reaction
I. Wilkinson's

1. Polymerization of alkenes
II. Ziegler Natta
III. $\mathrm{CO}_{2}(\mathrm{CO})_{8}$
2. Hydrogenation
3. Conversion of $\mathrm{CH}_{3} \mathrm{OH}$ to $\mathrm{CH}_{3} \mathrm{COOH}$
IV. $\left[\operatorname{Rh}(\mathrm{CO})_{2} \mathrm{I}_{2}\right]^{-}$
4. Hydroformylation
5. Conversion of methanol to gasoline

	I	II	III	IV
(A)	1	2	3	4
(B)	3	2	4	1
(C)	2	3	1	4
(D)	2	1	4	3

27. The number of peaks shown by spin free FeCl_{3} in its Mossbauer spectrum is
(A) 1
(B) 2
(C) 3
(D) 4
28. Assertion (A) : Benzene belongs to $D_{6 h}$ point group.

Reason (R) : It has $6 \mathrm{C}_{2} \mathrm{~s} \perp \mathrm{C}_{6}$ and a horizontal plane perpendicular to C_{6}.
(A) Both A and R are correct but R is not correct explanation of A
(B) Both A and R are correct and R is the correct explanation of A
(C) A is correct and R is not correct
(D) A is not correct and R is correct
29. The rotational spectrum of a diatomic molecule gave several lines. Some of these lines are located at 2021, 2024, 2027, 2030, $2033 \mathrm{~cm}^{-1}$. The rotational constant, $\mathrm{B}\left(\mathrm{in} \mathrm{cm}^{-1}\right.$) is
(A) 2027
(B) 3
(C) 1.5
(D) 9
30. Thiamine has the following heterocyclic systems in the structure
(A) Pyridine, pyrrole
(B) Pyridine, thiophene
(C) Pyrimidine, thiazole
(D) Pyrimidine, pyridine
31. Conversion of arylamines to fluoroarenes using $\mathrm{HBF}_{4}, \mathrm{HNO}_{2}$ is known as
(A) Scholl reaction
(B) Schiemann reaction
(C) Simmons-Smith reaction
(D) Weiss reaction
32. Which of the following combinations forms most stable compounds ?
(A) $\mathrm{Ag}^{+}, \mathrm{F}^{-}$
(B) $\mathrm{Ag}^{+}, \mathrm{NH}_{3}$
(C) $\mathrm{Pt}^{2+}, \mathrm{CN}^{-}$
(D) $\mathrm{Pt}^{2+}, \mathrm{CH}_{3} \mathrm{COO}^{-}$
33. In polarography, if ' m ' is the mass of mercury drop and ' t ' is the drop time, the diffusion current is proportional to
(A) $(\mathrm{m})^{1 / 3}(\mathrm{t})^{1 / 6}$
(B) $(m)^{2 / 3}(t)^{1 / 3}$
(C) $(m)^{2 / 3}(t)^{1 / 6}$
(D) $(m)^{3 / 2}(t)^{1 / 6}$
34. The correct nuclear magnetic resonance condition is
(A) $\mathrm{hg}=v \beta \mathrm{H}$
(B) $\mathrm{h} \beta=v \mathrm{gH}$
(C) $h \nu g=\beta H$
(D) $h v=g \beta H$
35. The entropy change (ΔS) in $\mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ for
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}=2270 \mathrm{Jg}^{-1}$
$1 \mathrm{~atm} ; 100^{\circ} \mathrm{C}, 1 \mathrm{~atm} ; 100^{\circ} \mathrm{C}$ is
(A) $\frac{2270}{373}$
(B) $\frac{373}{2270}$
(C) 2270×373
(D) $(2270 \times 373)^{1 / 2}$
36. Match the following :
I. Guanine
1.

II. Theophylline
2.

III. Hypoxanthine
3.

IV. Caffeine
4.

	I	II	III	IV
(A)	4	2	3	1
(B)	3	4	2	1
(C)	1	3	2	4
(D)	2	4	1	3

37. Identify X in the following reaction

(A)

(B)

(C)

(D)

38. The organic reagent used for the spectrophotometric determination of iron (II) is
(A) Dithizone
(B) Nitroso-R-salt
(C) Solochrome black
(D) 1,10-phenanthroline
39. Assertion (A) : $\mathrm{W}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}$ is a stable organometallic compound.

Reason (R) : Organometallic compound which obeys 18 electron rule is generally stable.
(A) A and R are true and R is the correct explanation of A
(B) A and R are true but R is not the correct explanation of A
(C) A is true but R is false
(D) A is false but R is true
40. Using the fundamental equation $d A=-S d T-P d v$ the Maxwell relation is
(A) $\left(\frac{\partial \mathrm{A}}{\partial \mathrm{P}}\right)_{T}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{S}}\right)_{V}$
(B) $\left(\frac{\partial S}{\partial V}\right)_{P}=\left(\frac{\partial \mathrm{P}}{\partial \mathrm{T}}\right)_{V}$
(C) $\left(\frac{\partial T}{\partial V}\right)_{S}=\left(\frac{\partial P}{\partial S}\right)_{T}$
(D) $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
41. The partition function (Q) is related to Gibbs free energy as
(A) $-\mathrm{RT}\left[\ln \frac{\mathrm{Q}}{\mathrm{N}_{\mathrm{A}}}\right]$
(B) $-\mathrm{RT}\left[\ln \frac{\mathrm{Q}}{\mathrm{N}_{\mathrm{A}}}+1-\left(\frac{\partial \ln \mathrm{Q}}{\partial \ln \mathrm{V}}\right)_{T}\right]$
(C) $-\mathrm{RT}\left[\ln \frac{\mathrm{Q}}{\mathrm{N}_{\mathrm{A}}}-1+\left(\frac{\partial \ln \mathrm{Q}}{\partial \ln \mathrm{V}}\right)_{T}\right]$
(D) $R T\left[\ln \frac{Q}{N_{A}}+1-\left(\frac{\partial \ln Q}{\partial \ln V}\right)_{T}\right]$
42. Predict X in the following reaction

X is
(A)

A)

(B)

(C)

43. Arrange the following in an increasing order of pKa values
(i) $\mathrm{H}_{3} \mathrm{C}-\mathrm{NO}_{2}$
(ii)

(iii)

(A) (i) $>$ (ii) $>$ (iii)
(B) (ii) $>$ (iii) $>$ (i)
(C) (iii) $>$ (i) $>$ (ii)
(D) (ii) $>$ (i) $>$ (iii)
44. The standard oxidation potentials of $\mathrm{Cu} / \mathrm{Cu}^{2+}$ and $\mathrm{Ag} / \mathrm{Ag}^{+}$electrodes are -0.337 V and -0.799 V respectively. The standard free energy change for the process
$\mathrm{Cu}+2 \mathrm{Ag}^{+} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ag}$ in J is
(A) $-(965 \times 184.8)$
(B) $-(965 \times 92.4)$
(C) $+(965 \times 184.8)$
(D) $+(965 \times 92.4)$
45. The standard electrode potentials of the half cells $\mathrm{Zn} / \mathrm{Zn}^{+2}$ and $\mathrm{Fe} / \mathrm{Fe}^{+2}$ are 0.76 V and 0.44 V respectively. The standard EMF of the spontaneous cell set with these electrodes is
(A) -3.2 V
(B) -0.32 V
(C) 3.2 V
(D) 0.32 V
46. The metal atoms present in nitrogenase enzyme are
(A) Cu and Zn
(B) Mn and Fe
(C) Mo and W
(D) Fe and Mo
47. A very low quantum yield of a photochemical reaction indicates that

1) The reaction is not a chain reaction
2) The reaction is a chain reaction but the reactants are regenerated
3) The excited molecules formed in the primary process are deactivated by a radiative process
4) The excited molecules do not emit fluorescence radiation

The correct statements are
(A) 1 and 4
(B) 2 and 4
(C) 1, 2 and 3
(D) 1, 2 and 4
48. Identify the product " X " of the following chemical transformation

(A)

(B)

(C)

(D)

49. Predict the product " X " of the reaction

(A)

(B)

(C)

(D)

50. The energy of the activated complex of a bimolecular reaction is equal to the
(A) Activation energy of the reaction
(B) Sum of the energy of the reactants and the activation energy of the reaction
(C) Difference in the energies of the reactants and products
(D) Sum of the energy of the reactants and the heat of reaction
51. The efficiency of Al^{3+} ion in coagulating a negatively charged sol is
(A) Equal to that of Na^{+}ion
(B) Three times that of Na^{+}ion
(C) Six times that of Na^{+}ion
(D) Nine times that of Na^{+}ion
52. The correct combination of geometry of complex and order of energy of ' d ' orbitals is
(A) Square pyramidal $\rightarrow d_{x z}, d_{y z}<d_{x y}<$ $d_{z^{2}}<d_{x^{2}-y^{2}}$
(B) Square planar $\rightarrow d_{z^{2}}<d_{x^{2}-y^{2}}<d_{x z^{\prime}}$, $d_{y z}<d_{x y}$
(C) Octahedral $\rightarrow d_{x^{2}-y^{2}}, d_{z}<d_{x y}, d_{x z^{\prime}}, d_{y z}$
(D) Tetrahedral $\rightarrow d_{x y}, d_{y z}, d_{x z}<d_{x^{2}-y^{2}}, d_{z^{2}}$
53. Which of the following proteins contains both iron and copper?
(A) Haemoglobin
(B) Cytochrome c
(C) Cytochrome c oxidase
(D) Carbonic anhydrase
54. Match the following:

1. Phloroglucinol
II.

2. P.Xylenol
III.

3. Thymol
IV.
 4. Isoeugenol

	I	II	III	IV
(A)	1	3	2	4
(B)	2	1	4	3
(C)	3	4	2	1
(D)	1	4	3	2

55. Predict the number of doublets present in the H -nmr spectrum of given compound

(A) One
(B) Two
(C) Three
(D) Four
56. The diffraction pattern of a lattice gave lines corresponding to (111), (200), (220), (311) and (222) Miller planes. The lattice belongs to
(A) body centred cubic
(B) monoclinic
(C) triclinic
(D) face centred cubic
57. The d_{200} of a cubic lattice is $4.1 \AA$ units. What is the unit cell parameter (a) in \AA units?
(A) 4.1
(B) 8.2
(C) 2.05
(D) $4.1 \times \sqrt{2}$
58. The sulphur containing drug used in the treatment of Wilson's disease is
(A) Pencillamine
(B) Streptomycin
(C) Tetracyclin
(D) Valinomycin
59. The molecular orbital configuration of $\left[\mathrm{Re}_{2} \mathrm{Cl}_{8}\right]^{2-}$ is
(A) $\sigma^{2} \pi^{2} \pi^{* 2} \delta^{2}$
(B) $\sigma^{2} \pi^{4} \delta^{2}$
(C) $\sigma^{2} \pi^{2} \delta^{2} \delta^{* 2}$
(D) $\sigma^{2} \pi^{4} \delta^{2} \sigma^{* 2}$
60. Use Woodward - Feiser rules and predict absorption maximum for the given compound

(A) 232 nm
(B) 252 nm
(C) 272 nm
(D) 293 nm
61. How many stereogenic centers are present in cholesterol?

(A) Six
(B) Seven
(C) Eight
(D) Five
62. According to Lux-Flood definition CaO and SiO_{2} are
(A) Both are acids
(B) Both are bases
(C) SiO_{2} is acid and CaO is base
(D) CaO is acid and SiO_{2} is base
63. Among the halogens from Cl to I , a decreasing trend is observed with respect to
I. Ionization energy
II. Electropositivity
III. Electronegativity
IV. Metallic character

The correct combination is
(A) I, II
(B) I, III
(C) II, III
(D) II, IV
64. A polymer sample contains 100 molecules of molecular weight 1000 and 200 molecules of molecular weight 10000. What is its number average molecular weight?
(A) 700
(B) 7000
(C) 10000
(D) 11000
65. Predict the product of the given reaction

$\xrightarrow{\mathrm{h} \nu}$ MajorProduct
(A)

(B)

(C) A and B
(D)

66. The standard deviation of a given set of data x_{i}, mean of the data \bar{x} for n items is given by the relation
(A) $\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}-1}}$
(B) $\frac{\sum\left(x_{i}-\bar{x}\right)}{n-1}$
(C) $\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}^{2}}$
(D) $\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{(n-1)^{2}}}$
67. According to HSAB Theory
I. Hard species have large HOMO-LUMO gap
II. Hard species have small HOMO-LUMO gap
III. Soft species have large HOMO-LUMO gap
IV. Soft species have small HOMO-LUMO gap

The correct combination is
(A) I, II
(B) II, IV
(C) II, III
(D) I, IV
68. Assertion (A) : $\overline{\mathrm{e}}$ transfer in
$\left[\mathrm{Co}^{*}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2^{+}} \rightarrow$ $\left[\mathrm{Co}{ }^{*}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
is slow whereas $\overline{\mathrm{e}}$ transfer
$\left[\mathrm{Fe}^{*}(\mathrm{CN})_{6}\right]^{3-}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow$ $\left[\mathrm{Fe}^{*}(\mathrm{CN})_{6}\right]^{4-}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \quad$ is fast

Reason (R) : Cobalt remains low spin in both oxidized and reduced forms (Co^{3+} to Co^{2+} complexes) whereas iron changes from low spin to high spin complex on $\overline{\mathrm{e}}$ transfer (Fe^{3+} to Fe^{2+} complex)
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true but R is not the correct explanation of A
(C) A is true but R is false
(D) A is false but R is true
69. Identify "cis" compound
(A)

(B)

(C)

(D)

70. Indicate the product " X " formed upon photocycloaddition between cyclohexanedione and methylacrylate

(A)

(B)

(C)

(D)

71. Identify the name reaction

(A) Olah reaction
(B) Price reaction
(C) Kulka reaction
(D) Friedel-Crafts reaction
72. Identify X in the following reaction

X is
(A)

(B)

(C)

(D)

CN

73. The major product in the following reaction is

(A)

(B)

(C)

(D)

74. What is the other name for Benzil-Benzilic acid type rearrangement?

(A) Leibig
(B) Warren
(C) Houber
(D) Eastham
75. Assertion (A) : The radius of Fe^{3+} is less than that of Fe^{2+}.

Reason (R) : Fe^{3+} has a lower effective nuclear charge than Fe^{2+}.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true but R is not the correct explanation of A
(C) A is true but R is false
(D) A is false but R is true

Space for Rough Work

```
||||||||| |||||||| ||||||||||
```

Space for Rough Work

Space for Rough Work

