

LIFE SCIENCES

Paper - III

1. The standard free energy change for oxidative phosphorylation using NADH as a substrate is about $-53 \mathrm{Kcal} / \mathrm{mole}$ and the free energy in the 2.5 moles of ATP generated is $-17.5 \mathrm{Kcal} / \mathrm{mole}$. You can conclude all of the following EXCEPT
(A) Only about 33\% of the free energy in NADH was used to generate ATP
(B) About 66% of the free energy in NADH was converted to heat
(C) Overall change in free energy of the reaction was $-35.5 \mathrm{Kcal} / \mathrm{mole}$
(D) Oxidative phosphorylation is a reversible reaction
2. Match the following segments of an average human gene with respect to the number of base pairs in each segment.

List I

List II
Gene segment Number of base pairs
I. 5' untranslated region

1. 1400
II. Coding sequence
2. 27000
III. 3' untranslated region
3. 800
IV. Intron sequence
4. 300

	I	II	III	IV
(A)	3	2	1	4
(B)	3	2	4	1
(C)	4	2	1	3
(D)	4	1	3	2

3. In Meselson and Stahl's experiment, the heavy DNA was replicated in the presence of light nucleotides. What results would have been seen in the first generation of products, if replication is conserved?
(A) Half of the duplexes would be heavy and half would be light
(B) All the duplexes would be intermediate in density
(C) Half of the duplexes would be heavy and half would be intermediate in density
(D) All the duplexes would be light
4. Src Protein possesses the following catalytic activity
(A) Tyrosine kinase
(B) Serine kinase
(C) Phosphoinositide kinase
(D) GTPase
5. Morphogenetic fields reflect
(A) Developmental potency
(B) Polarity but not Axis
(C) Break of communication
(D) Developmental fate
6. Match the following concerning the precursor of phytohormone and its physiological action.
List - I
I. Methionine
List - II
7. Delay in senescence
II. Acetyl coenzyme A 2. Phototropism
III. Tryptophan
8. Fruit ripening
IV. Adenosine
9. α-amylase monophosphate synthesis

	I	II	III	IV
(A)	2	4	3	1
(B)	4	2	3	1
(C)	2	4	1	3
(D)	3	4	2	1

7. Glutathione (GSH) prevents damage of the Haemoglobin (Hb). To keep GSH in reduced state which of the following enzyme found in RBC is necessary ?
(A) Glucose-6-phosphate dehydrogenase
(B) Fructose-6-phosphate dehydrogenase
(C) Glyceraldehyde-3-phosphate dehydrogenase
(D) Phosphofructokinase
8. A newborn is noted to have microcephaly after birth. His mother is 38 -year-old. She also has a 5 -year-old son who is mentally retarded and she had one previous second-trimester miscarriage. In addition, she has a genetic disease that required a special diet, but she discontinued the diet many years ago. On physical examination, the infant's weight and length are both below the $10^{\text {th }}$ percentile for his gestational age. He is also noted to have a grade III systolic ejection murmur best heard at the lower left sternal border. Which of the following conditions does the mother most likely to have?
(A) Fragile X Syndrome
(B) Galactosemia
(C) Hypothyroidism
(D) Phenylketonuria
9. The following are the drugs obtained one each from root, stem bark, leaf and fruit. Arrange them in the correct sequence. Use the codes given.
I. Atropine (Atropa)
II. Quinine (Cinchona)
III. Brahmi(Centella)
IV. Opium (Papaver)

(A)	II	III	IV	I
(B)	II	III	I	IV
(C)	I	II	III	IV
(D)	I	III	II	IV

10. Assertion (A) : Eutrophic refers to lakes that are highly productive in terms of organic matter and well supplied with nutrients.
Reason (R): The lakes receives point source of wastes and supporting thick algal growth.
(A) Both (A) and (R) are true and (R) is the correct explanation of (A)
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(C) (A) is true but (R) is false
(D) Both (A) and (R) is false
11. Assertion (A) : Assortative mating involving individuals of similar phenotype cause the change in the frequency of genotypes in the resulting population.

Reason (R) : Random mating under ideal conditions facilities the unaltered frequency of alleles and phenotypes across generations.
(A) A is true
(B) R is true
(C) Both A and R are true
(D) Both A and R are false
12. Match the following at left with appropriate answer given in the right.

List - I
I. Escherichia coli
II. Foot \& Mouth disease vaccine
III. Toxoid vaccine
IV. Bacillus subtilis
V. Yeast

	I	II	III	IV	V
(A)	1	4	5	3	2
(B)	4	1	5	2	3
(C)	3	2	4	1	5
(D)	2	4	3	5	1

13. We have a mixture of proteins with following properties

	MW	p
Protein 1	12 kDa	10
Protein 2	62 kDa	4
Protein 3	28 kDa	6
Protein 4	9 kDa	5

Predict the order of emergence of these proteins when a mixture of the four is chromatographed in DEAE cellulose of pH 7.0 .
(A) 1, 3, 4, 2
(B) $2,4,3,1$
(C) $2,3,1,4$
(D) $4,1,3,2$
14. Assertion (A) : The peptide bonds in a protein have partial double bond character.
Reason (R) : The planar peptide group limits polypeptide conformations.
(A) Both A and R are false
(B) Both A and R are true and R is the consequence of A
(C) A is true but R is false
(D) Both A and R are true but R is not the correct explanation
15. Assertion (A) : Vertebrate cells use several different CdKs to manage various transitions in the cells cycle, yet budding yeast is able to get by with a single CdK.
Reason (R) : In yeast the single CdK (CdK1) binds to different cyclins. These cyclins could activate CdK1 and also influence its target specificity.
(A) A is correct but R is not correct explanation
(B) A is not correct but R is correct
(C) Both A and R are correct
(D) Both A and R are incorrect
16. Which of the following sequence of events occur in E. coli and are released from catabolite repression by transfer to low glucose medium?
(A) cAMP level rises, cAMP binds to CAP. cAMP-CAP complex binds to the site on a DNA and activates transcription.
(B) cAMP level rises, cAMP binds to CAP, cAMP-CAP complex binds to the site on a DNA and represses transcription.
(C) cAMP level rises, cAMP binds to CAP, cAMP-CAP complex is removed from a site on DNA and activates transcription.
(D) cAMP level falls, cAMP is removed from CAP, CAP then binds to a site on DNA and activates transcription.
17. H-ras and K-ras oncogenes differ with C-ras in aminoacid substitution at these positions
(A) 12, 59, 61
(B) 12, 60, 64
(C) $11,60,61$
(D) $12,60,61$
18. In chick gastrulation the following events occur.
l. Formation of posterior marginal zone
II. Elaboration of hypoblast
III. Formation of primitive streak
IV. Formation of primitive node

Of the above events which are associated with the beginning of the gastrulation.
(A) I and II
(B) II and III
(C) III and IV
(D) I and IV
19. Arrange the following events in photorespiration in correct order starting from oxygenation of Ribulose-1,5-bis phosphate.
I. Decarboxylation of glycine
II. Oxidation of glycolate
III. Deamination of serine
IV. Reduction of hydroxy pyruvate

(A)	I	III	IV	II
(B)	II	I	III	IV
(C)	II	III	I	IV
(D)	IV	I	II	III

20. In fast glutamate neurotransmission
I. Glutamate is inhibitory neurotransmitter
II. Release of neurotransmitter by microionophoresis
III. The neurotransmitter carries positive charge at physiological pH
IV. 35-40\% of synapses use glutamate as neurotransmitter

Identify the correct pair of distractors
(A) I and II
(B) II and IV
(C) I and III
(D) III and IV
21. A geneticist studying the number of bristles on the second leg of Drosophila melanogaster determined that a wild-type strain has a mean number of 486.3 bristles per leg. A sample of males and females from this population with 420 bristles were bred and the offspring had a mean bristle number of 432. What is the h2 for this population?
(A) 0.82
(B) 0.28
(C) 0.84
(D) 0.50
22. In this method of speciation the new species evolves in geographical isolation from the parent species.
(A) Sympatric speciation
(B) Parapatric speciation
(C) Allo-parapatric speciation
(D) Allopatric speciation
23. Arrange the following atmospheric layers in order to nearest to farthest from surface of the earth.
I. Exosphere
II. Mesosphere
III. Ionosphere
IV. Stratosphere
V. Troposphere
(A) V IV II III I
(B) V II III IV I
(C) I V IV III II
(D) V III IV I II
24. Assertion (A): Species is composed of populations whose members mate with each other member and produce fertile offspring.
Reason (R) : According to EarnstMayor species groups of actually interbreeding natural populations which are reproductively isolated from other such groups.
(A) Both (A) and (R) are wrong
(B) Both (A) and (R) are correct and (R) is a correct explanation to A
(C) Only (A) is correct and (R) is wrong
(D) Both (A) and (R) are correct but (R) is not correct explanation to (A)
25. In the fermentative production of vinegar by two fermenting organisms namely Saccharomyces sp. and Acetobacter sp., the biochemical function of each organism
(A) Saccharomyces sp. ferments glucose to vinegar and Acetobacter sp. stabilizes it to give sour taste
(B) Acetobacter sp. ferments glucose to ethanol and Saccharomyces oxidizes it to acetic acid
(C) Acetobacter sp. ferments glucose to acetic acid and Saccharomyces sp. oxidizes it to vinegar
(D) Saccharomyces sp. ferments glucose to ethyl alcohol and Acetobacter sp. oxidizes it to acetic acid
26. Which of the following are the types of mass analysers in Mass Spectroscopy ?

1. ESI
2. TOF
3. MALDI
4. Quadrupole
5. Electron Multiplier
(A) 1 and 3 are correct
(B) 2 and 4 are correct
(C) 3 and 5 are correct
(D) 1, 3 and 5 are correct
6. In the leucine Zipper DNA binding domain at what position is the leucine present in the primary sequence?
(A) Every $3^{\text {rd }}$
(B) Every $7^{\text {th }}$
(C) Every $9^{\text {th }}$
(D) Every $5^{\text {th }}$
7. The chloroplast genes encode both RNAs and proteins involved in gene expression as well as a variety of proteins that function in photosynthesis. Arrange the following in the order of highest to lowest number of gene encoded by chloroplast DNA.
8. tRNAs
9. Photosystem I
10. Photosystem II
11. Ribosomal proteins
12. Ribulose bis phosphate carboxylase

(A)	5	2	3	4	1
(B)	1	4	3	2	5
(C)	5	3	2	4	1
(D)	1	4	5	2	3

29. The higher order structure of DNA shows symmetry, whereas the higher order structures of most proteins do not. Why a protein does not take a more regular shape like DNA ?
(A) DNA has one main function in cells whereas proteins have many
(B) The many different amino acid R groups in proteins confer different shapes
(C) Some S amino acids cause proteins to bend, others cause proteins to flatten
(D) All the above statements are correct
30. Fusion protein expression helps in
I. Elevated stability
II. Expression analysis
III. Easy purification
IV. Localization studies
(A) I, II and III are correct
(B) I, III and IV are correct
(C) II, III and IV are correct
(D) I, II and IV are correct
31. The following is the criteria for purity of an enzyme.
(A) Enzyme activity
(B) Specific activity
(C) SDS-PAGE
(D) Gel-filtration chromatography
32. Match the following :

List-I

I. Spina bifida
II. N-catherin
III. Primary neurulation 3
V. Chordoneural hinge
(A) $4 \quad 3 \quad 2 \quad 1$
(B) $4 \quad 5 \quad 3 \quad 2$
(C) $5 \quad 3 \quad 2 \quad 1$
(D) $\begin{array}{llll}1 & 5 & 3 & 2\end{array}$
33. Arrange the following enzymes in proper sequence in carbon assimilation pathway in CAM plants beginning with nocturnal opening of stomata.
I. Phosphoenolpyruvate carboxylase
II. Ribulose 1,5-bisphosphate carboxylase
III. Malic enzyme
IV. Malate dehydrogenase
(A) IV, III, II, I
(B) I, III, IV, II
(C) IV, I, III, II
(D) I, IV, III, II
34. Assertion (A) : Reproductive timing is much more important in female vertebrates because of a relatively high degree of reproductive investment by them.

Reason (R) : Biologically eggs are more expensive to produce than are sperms.
(A) Both (A) and (R) wrong
(B) Both (A) and (R) are correct, and (R) is correct explanation to (A)
(C) Both (A) and (R) are correct but (R) is not correct explanation to (A)
(D) Only (A) is correct and (R) is wrong
35. Which one of the following conditions correctly describes the manner of determining the sex in the given example ?
(A) Homozygous sex chromosomes (XX) produce male in Drosophila
(B) Homozygous sex chromosomes (ZZ) determine female sex in birds
(C) XO type of sex chromosomes determine male sex in grasshopper
(D) XO condition in humans as found in Turner Syndrome, determines female sex
36. Pick up the correct combinations from the following
I. Eastern Himalayas - Rich phytodiversity enriched with primitive angiosperms
II. Eastern Ghats - Shola forests
III. Western Ghats - Silent valley
IV. Sheshachalam hills - Pterocarpus santalinus
(A) I, II, III and IV
(B) I, III \& IV only
(C) I, II \& IV only
(D) II, III \& IV only
37. Genetic drift is resulted due to
I. Founder effect
II. Large populations
III. Small populations
IV. Bottleneck effect
(A) I and II
(B) I, III and IV
(C) I, II and IV
(D) III and IV
38. Match the following with the appropriate answer given at the right to the one given at left.
I. Penicillin

1. Cellulose
II. Root nodule
2. Chemoautotroph
III. Nitrosomonas sp.
3. Secondary metabolite
IV. Trichoderma reesei 4. Phosphate nutrition
V. Mycorrhizae
4. Biological enrichment

Identify the correct matching from the following :

	I	II	III	IV	V
(A)	2	1	4	3	5
(B)	3	5	2	1	4
(C)	3	4	2	1	5
(D)	4	3	1	5	2

39. Assertion (A) : DNA fingerprinting technique examine non-coding STRs in samples from individuals.
Reason (R) : The number of repeats in a STR at any given site on DNA does not vary among individuals.
(A) Both A and R are false
(B) Both A and R are true and R is the correct explanation
(C) Both A and R are true but R is not the correct explanation
(D) A is true but R is false
40. Among the following compounds which two components cannot form hydrogen bonds with water.
i. Methanol
ii. Toluene
iii. Methyl Acetate
iv. Hexane
(A) (i) and (iii) are correct
(B) (ii) and (iv) are correct
(C) (ii) and (iii) are correct
(D) (i) and (iv) are correct
41. Assertion (A) : If the mutant ARF1 were the only form of ARF 1 in the cell, it is likely that it would prove lethal.

Reason (R) : Disassembly of the COPI coat requires hydrolysis of GTP by ARF1 and thus all ARF1-mediated transport involving COPI-coated vesicles would be blocked in the cells with mutant ARF1.
(A) A is true and R is correct explanation
(B) A is true but R is not correct explanation
(C) A and R are not correct
(D) A is not correct but R is correct
42. Assertion (A) : Every chromosome, during metaphase, has two chromatids.

Reason (R) : Synthesis of DNA takes place in the S-phase of interphase.
(A) Assertion is true statement but Reason is false
(B) Assertion is false statement but Reason is true
(C) Both Assertion and Reason are true but the Reason is not the correct explanation of the Assertion
(D) Both Assertion and Reason are true and the Reason is the correct explanation of the Assertion
43. Killer lymphocytes trigger apoptosis in target cell by activation of
(A) Procaspase 8
(B) Procaspase 9
(C) Procaspase 3
(D) Procaspase 8 or 10
44. Left - Right Axis formation in chick envisages the following :
I. Signalling for asymmetry is initiated
II. Establishment of left and right coordinator
III. Induction of Asymmetric gene expression
IV. Asymmetric expression of transcription factors
V. Establishment of mid line block

Arrange them in correct sequence that leads to the formation of Left-Right Axis formation.
(A) I \rightarrow II \rightarrow III \rightarrow IV $\rightarrow \mathrm{V}$
(B) II $\rightarrow \mathrm{III} \rightarrow \mathrm{I} \rightarrow \mathrm{IV} \rightarrow \mathrm{V}$
(C) II $\rightarrow \mathrm{I} \rightarrow \mathrm{III} \rightarrow \mathrm{V} \rightarrow \mathrm{IV}$
(D) II \rightarrow III $\rightarrow \mathrm{I} \rightarrow \mathrm{V} \rightarrow \mathrm{IV}$
45. Match the following :

List - I

I. PMA
II. 2,4-D
III. Ethephon
IV. BAP

Code:

	I	II	III	IV
(A)	2	3	4	1
(B)	3	4	1	2
(C)	2	4	3	1
(D)	4	2	1	3

46. During the muscle contraction, the following events are seen
I. Power stroke develops
II. Action potential develops on sarcolemma
III. Loosening of the tie between Troponin and Actin
IV. Release of Ca^{++}ions from the cistern of ' T ' tubule
V. Sliding of Actin

Arrange these in correct sequence to depict the muscle contraction.
(A) II, IV, III, I and V
(B) I, II, III, IV and V
(C) II, III, IV, V and I
(D) I, III, IV, V and II
47. Assertion : An organism with lethal mutation may not even develop beyond the zygote state.

Reason : All types of gene mutations are lethal.
(A) Both Assertion and Reason are true and the Reason is the correct explanation of the Assertion
(B) Both Assertion and Reason are true but the Reason is not the correct explanation of the Assertion
(C) Assertion is a true statement but Reason is false
(D) Both Assertion and Reason are false
48. Arrange the following, which they appeared, in the chronological order. Use the codes given below.
I. Classification of Angiosperms by Takhtajan
II. Classification of Anthophyta by Bessey
III. Species plantarum by Linnaeus
IV. Genera plantarum by Bentham and Hooker
(A) III, IV, II and I
(B) IV, III, II and I
(C) II, III, IV and I
(D) III, IV, I and II
49. Assertion (A) : r-selected populations have a high intrinsic rate of growth and tend to 'boom' when environmental conditions are favourable.

Reason (R) : K'-selected populations have relatively constant density at or near the carrying capacity of the environment

Above two statements which one of the following is correct?
(A) Both the statements are correct
(B) Both the statements are wrong
(C) A is correct but R is wrong
(D) A is wrong but R is correct
50. Match the following for an appropriate answer from the right to the term given in the left.
I. Obligate parasitic 1. Poliovirus pathogen
II. Pathogen of 2. Salmonella typhi eukaryotic nature
III. Pyogenic pathogen
3. Tryponema pallidum
IV. Agent to cause enteric fever
4. Staph aureus
V. Dermatophytic pathogen
5. Candida albicans
VI. Pathogen affecting nervous system
6. Trichophyton rubrum

Code :

	I	II	III	IV	V	VI
(A)	2	4	3	6	5	1
(B)	3	2	1	6	5	4
(C)	4	5	2	3	6	1
(D)	3	5	4	2	6	1

51. Widely used gene sequences for the determination of phytogenetic relation of different species
I. Rubisco large subunit encoding gene
II. γ-RNA gene
III. Cytochrome oxidase gene
IV. t-RNA gene
(A) I and III
(B) I, II and III
(C) I, II and IV
(D) I, III and IV
52. Which of the following is an example of a negative interaction of a species ?
(A) Symbiosis
(B) Predation
(C) Mutualism
(D) Proto-cooperation
53. Assertion (A) : Fluorescence involves emission of electromagnetic radiation by matter upon excitation.

Reason (R): The wavelength of absorbed radiation must be higher than that of emitted radiation.
(A) Both A and R are true and R is the correct explanation
(B) Both A and R are true but R is not the correct explanation
(C) Both A and R are false
(D) A is true but R is false
54. The sidechains of which of the following amino acids can be phosphorylated in proteins ?
i. Tyrosine
ii. Glycine
iii. Aspartic acid
iv. Serine
(A) (ii) and (iii) are correct
(B) (i) and (ii) are correct
(C) (ii) and (iv) are correct
(D) (i) and (iv) are correct
55. In the membrane of human red blood cell, the ratio of the mass of protein (average MW = 50000) to phospholipid (average $\mathrm{MW}=800$) to cholesterol $(M W=386)$ is about $2: 1: 1$. How many lipid molecules are there for every protein molecule ?
(A) 104
(B) 65
(C) 84
(D) 95
56. Assertion: Replication and transcription occur in the nucleus but translation occurs in the cytoplasm.

Reason: mRNA is transferred from the nucleus into the cytoplasm where ribosomes andamino acids are available for protein synthesis.
(A) Both Assertion and Reason are true and the Reason is the correct explanation of Assertion.
(B) Both Assertion and Reason are true but the Reason is not the correct explanation of the Assertion.
(C) Assertion is true statement but Reason is false.
(D) Both Assertion and Reason are false statements.
57. Phosphorylation of retinoblastoma (Rb) protein results in the following :
(A) Activation of genes required in G-phase
(B) Activation of gene required in S-phase
(C) Repression of genes required in S-phase
(D) Repression of genes required in M-phase
58. Assertion (A) : Development of Eye lens from epidermis is a established example of embryonic induction process.
Reason(R) : The exact nature of stimulus for lens induction is not known, although RNA has been implicated as a messenger.
(A) Both (A) and (R) correct, but (R) is not correct explanation for (A).
(B) Only (A) is correct (R) is wrong
(C) Both (A) and (R) wrong
(D) Both (A) and (R) correct, (R) is correct explanation for (A)
59. Match the following :

List-I (Protein with)	List-II (Substance)
I. Copper	1. Cytochrome
II. Non-heme iron	2. Nitrate reductase
III. Molybdenum	3. Ferredoxin
IV. Heme iron	4. Plastocyanin

Code :
I II III IV
(A) $3 \begin{array}{llll}3 & 2 & 4\end{array}$
(B) $4 \quad 3 \quad 2 \quad 1$
(C) $\begin{array}{llll}4 & 2 & 1 & 3\end{array}$
(D) $2 \begin{array}{llll}2 & 3 & 4\end{array}$
60. Match the following :
List - I
List - II
I. FSH
II. Progesterone
III. Relaxin
IV. Vasopressin

1. Steroid
2. Polypeptide
3. Nonapeptide
4. Carbohydrate
5. Glycoprotein

Code :

	I	II	III	IV
(A)	1	2	3	5
(B)	5	2	3	1
(C)	3	2	1	5
(D)	5	1	2	3

61. Assertion : The adapted characters acquired by an organism are not inherited.

Reason : They do not get sufficient time to be fixed at genetic level.
(A) Both Assertion and Reason are true and the Reason is the correct explanation of Assertion.
(B) Both Assertion and Reason are true but the Reason is not the correct explanation of the Assertion.
(C) Assertion is a true statement but Reason is false.
(D) Both Assertion and Reason are false.
62. Match List - I with List - II and select the correct answer using the codes given below the lists.

List - I

(Name of the plant (Characteristic compound
I. Papaver somniferum
II. Artemisia cina
III. Catharanthus roseus
IV. Chrysanthemum cinerariaefolium
5. Quinine

Code :

	I	II	III	IV
(A)	2	1	4	3
(B)	2	4	1	5
(C)	2	4	1	3
(D)	2	5	1	3

63. The succession starts from the primitive substratum where there was no previously any sort of living matter is known as
(A) Primary succession
(B) Secondary succession
(C) Autogenic succession
(D) Allogenic succession
64. Bio-fertilizer organisms enhance the plant growth; biopesticides kill crop pests. Which one of the following is correctly matched?
(A) Rhizobium, - Biofertilizers

Trichoderma
(B) Baculoviruses, - Biopesticides

Nostoc
(C) Mycorrhizae, - Biopesticides

Actinorhiza
(D) Azotobacter, - Biofertilizers Aztobacter
65. Assertion (A) : Real time PCR is widely used for measuring levels of gene espression.

Reason (R) : Capillary electrophoresis is used for the separation of amplified products in real time PCR.
(A) Both A and R are true
(B) Both A and R are false
(C) A is true but R is false
(D) A is false but R is true
66. In an anion exchange chromatography the bound protein is eluted by
I. increasing salt concentration
II. decreasing salt concentration
III. increasing pH of the buffer
IV. decreasing pH of the buffer
(A) I and IV are correct
(B) I and III are correct
(C) II and IV are correct
(D) II and III are correct
67. Assertion (A) : Removal of bark as a ring (Ringing) results in the death of the tree.

Reason (R) : Ringing results in discuption of Xylem strands.
(A) Both (A) and (R) are true and (R) is the correct explanation for (A)
(B) Both (A) and (R) are true but (R) is not the correct explanation for (A)
(C) (A) is true but (R) is false
(D) (A) is false but (R) is true
68. Match the following buffers with their pH range
I. Acetate buffer

1. $7.8-8.8$
II. Tris HCl buffer
2. $2.8-4.0$
III. Phosphate buffer
3. $4.0-5.0$
IV. Citrate buffer
4. $6.0-7.2$

Code :

	I	II	III	IV
(A)	2	4	1	3
(B)	4	1	2	3
(C)	4	3	2	1
(D)	3	1	4	2

69. E-coli cells may divide into two cells every 15 minutes in a particular medium. If 1000 cells are inoculated in a culture, how many cells are produced after 4 hours of time ?
(A) 4,09,60,000
(B) $48,96,00,000$
(C) $4,89,600$
(D) $40,96,000$
70. A transposon has been removed and inversed the sequences shown in the box 5^{\prime} AT GCTAATGGCT AA3 3^{\prime} TA CGATTACCGA TT5' The correct rearranged DNA sequences is:
(A) 5^{\prime} ATCGATTACCGAAA 3^{\prime} 3^{\prime} TAGCTAATGGCTTT 5^{\prime}
(B) 5' ATTCGGTAATCGAA 3^{\prime} 3^{\prime} TAAGCCATTAGCTT 5^{\prime}
(C) 5' ATAGCCATTAGCAA 3^{\prime} 3^{\prime} TATCGGTAATCGTT 5^{\prime}

(D) 5^{\prime} ATGCTAATGGCTAA 3^{\prime} 3^{\prime} TACGATTACCGATT 5^{\prime}

71. Match the following codons with their corresponding amino acid.
l. Arg
72. UAA
II. Stop
73. AAU
III. Met/Start
74. $A G G$
IV. Asn
75. $A \cup G$

Code :

	I	II	III	IV
(A)	3	1	4	2
(B)	2	3	1	4
(C)	3	4	2	1
(D)	4	2	1	3

74. Mixed lymphocyte reaction test is carried out to determine
(A) MHC I function
(B) MHC II function
(C) Both MHC I and MHC II functions
(D) Antibody secretion
75. Match the following techniques to their applications in protein analysis.
76. Mass spectroscopy
l. Solution structure
77. X-ray diffraction
II. Secondary structure
78. Nuclear Magnetic

Resonance
III. Molecular Mass
4. Circular Dichroism IV. Crystal structure

Code :

$\begin{array}{ccccc} & \text { I } & \text { II } & \text { III } & \text { IV } \\ \text { (A) } & 2 & 1 & 4 & 3\end{array}$
(B) $3 \quad 4 \quad 1 \quad 2$
(C) $2 \begin{array}{llll}2 & 1 & 3\end{array}$
(D) $\begin{array}{llll}4 & 3 & 2 & 1\end{array}$

Space for Rough Work

Space for Rough Work

Space for Rough Work

