

MATHEMATICAL SCIENCES

Paper - III

1. If $f:[0,1] \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ \frac{1}{2^{r-1}} & \text { if } \\ \frac{1}{2^{r}}<x \leq \frac{1}{2^{r-1}} \text { for } r=1,2,3, \ldots\end{cases}
$$

then $\int_{0}^{1} f(x) d x=$
(A) $\frac{2}{3}$
(B) $\frac{3}{4}$
(C) $\frac{4}{5}$
(D) $\frac{5}{6}$
2. The correct statement among the following is
(I) $f_{n}(x)=x^{n}$ converges uniformly to 0 on $[0, a)$ for any a with $0<a<1$
(II) $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ converges uniformly to 0 on \mathbb{R}
(III) $f_{n}(x)=x^{n-1}(1-x)$ converges only pointwise on $(0,1)$
(IV) $f_{n}(x)=x^{n}$ converges uniformly on $[0,1)$
(A) I
(B) II
(C) III
(D) IV
3. The improper integral $\int_{0}^{\infty} \frac{x^{m}}{1+x^{n}} \mathrm{dx}$ converges
only if
(A) $n>m+1$
(B) $n=m$
(C) $\mathrm{n} \leq m+1$
(D) $n \neq m$
4. If $f:(a, b) \rightarrow \mathbb{R}$ is monotonic increasing function and $a<c<b$ then $f(c-0)$, the left hand limit of f at c is equal to
(A) $\inf \{f(t): c<t<b\}$
(B) $\inf \{\mathrm{f}(\mathrm{t}): \mathrm{a}<\mathrm{t}<\mathrm{c}\}$
(C) $\sup \{\mathrm{f}(\mathrm{t}): \mathrm{a}<\mathrm{t}<\mathrm{c}\}$
(D) $\sup \{f(\mathrm{t}): \mathrm{c}<\mathrm{t}<\mathrm{b}\}$
5. If \mathfrak{M} is the collection of all Lebesgue measurable sets in \mathbb{R} then the incorrect statement among the following is :
(A) \mathfrak{M} is σ-algebra of subsets of \mathbb{R}
(B) Every open set in \mathbb{R} is a member of \mathfrak{M}
(C) Every closed set in \mathbb{R} is a member of \mathfrak{M}
(D) Every member of \mathfrak{M} is a Borel set
6. The function
$f(x, y)=x^{3}+y^{3}-6\left(x^{2}+y^{2}\right)+12 x y-75(x+y)$
has maximum value at the point
(A) $(5,5)$
(B) $(-5,-5)$
(C) $(1,7)$
(D) $(7,1)$
7. In the metric space \mathbb{R}^{2}, the Euclidean plane, consider the lists given below :

List - I
 List - II

(a) A closed
(1) $\left\{\left(\frac{1}{n}, 0\right) \in \mathbb{R}^{2}: n=1,2,3, \ldots\right\}$
unbounded set
(b) A bounded set
(2) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 7\right\}$ which is not closed
(c) An unbounded
(3) ϕ
set which is both
open and closed
(d) A non-empty
(4) $\left\{(0, n) \in \mathbb{R}^{2}: n=0, \pm 1, \pm 2, \ldots\right\}$ compact set
(5) $\left\{(x, y) \in \mathbb{R}^{2}:(x+1)^{2}+y^{2}>4\right\}$
(6) \mathbb{R}^{2}

The correct matching of List-I from List-II is
(a) (b)
(c) (d)
$\begin{array}{lllll}\text { (A) } & 3 & 2 & 6 & 1\end{array}$
(B) 433
(C) $\begin{array}{llll}4 & 1 & 6 & 2\end{array}$
(D) $\begin{array}{llll}3 & 2 & 4 & 1\end{array}$
8. Assertion (A) : In the normed linear space $\mathscr{C}[a, b]$ of continuous real-valued functions on [a, b] with the supremum norm, the set \mathscr{P} of all polynomials is a dense subset

Reason (R): Weierstrauss approximation theorem holds
(A) (A) is true but (R) is false
(B) Both (A) and (R) are false
(C) Both (A) and (R) are true but (R) is not a correct explanation for (A)
(D) Both (A) and (R) are true; and (R) is the correct explanation for (A)
9. The function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$ has minimum at the point
(A) $(1,2)$
(B) $(-1,0)$
(C) $(1,0)$
(D) $(-1,-2)$
10. The value of the integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ is
(A) $\frac{\pi}{2}$
(B) 2π
(C) π
(D) $\frac{3 \pi}{2}$
11. The determinant of the matrix $A=\left(\begin{array}{rrr}1 & 3 & -3 \\ -3 & -5 & 2 \\ -4 & 4 & -6\end{array}\right)$ is
(A) 48
(B) 40
(C) 38
(D) 50
12. Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right)
$$

Let β and γ be the standard ordered basis for \mathbb{R}^{2} and \mathbb{R}^{3} respectively. Then the matrix corresponding $[T]_{\beta}^{\gamma}$ is
(A) $\left[\begin{array}{rr}1 & 3 \\ 0 & 0 \\ 2 & -4\end{array}\right]$
(B) $\left[\begin{array}{rr}3 & 1 \\ 0 & 1 \\ 2 & -4\end{array}\right]$
(C) $\left[\begin{array}{rr}1 & 3 \\ 0 & 0 \\ -2 & -4\end{array}\right]$
(D) $\left[\begin{array}{rr}-1 & 3 \\ 0 & 0 \\ -2 & -4\end{array}\right]$
13. Let the matrix $A=\left(\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ then $A^{2}-2 A+5 I$ is equal to
(A) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(B) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(C) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
(D) $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$
14. The solution of the system of equations
$x_{1}+2 x_{2}-x_{3}=-1$
$2 x_{1}+2 x_{2}+x_{3}=1$
$3 x_{1}+5 x_{2}-2 x_{3}=-1$ is
(A) $\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$
(B) $\left[\begin{array}{c}4 \\ -2 \\ 1\end{array}\right]$
(C) $\left[\begin{array}{c}-4 \\ -2 \\ 1\end{array}\right]$
(D) $\left[\begin{array}{c}4 \\ -3 \\ -1\end{array}\right]$
15. The rank of the matrix $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 1 & 3 & 4 \\ 2 & 3 & -1\end{array}\right)$ is
(A) 1
(B) 3
(C) 0
(D) 2
16. Let $f(z)$ be analytic in $|z| \leq 1$ and $|f(z)| \leq 1$ with $f(0)=\frac{1+i}{\sqrt{2}}$. Then $f(i)-f(1)=$
(A) 0
(B) $\mathrm{i}-1$
(C) i
(D) 1
17. $\int_{0}^{\pi} e^{\cos \theta} \cos (\sin \theta) d \theta=$
(A) 2π
(B) π
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{4}$
18. Suppose C is the circle $|z|=2$ positively oriented. Then $\int_{C} \frac{1}{z^{2}+2 i z-1} d z=$
(A) $2 \pi i$
(B) -2π
(C) 2π
(D) 0
19. Suppose $f(z)$ is analytic on $|z| \leq 1$ such that $|f(z)-z|<|z|$ on $|z|=1$. Then the number of zeros of $f(z)$ in $|z|<1$ is
(A) 1
(B) 2
(C) 3
(D) 5
20. $\int_{0}^{\infty} \frac{\sin 5 x}{x} d x=$
(A) π
(B) 2π
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{4}$
21. Suppose C is the circle $|z|=1$ positively oriented, and $f(z)=\frac{e^{z}}{z(z-2)(z-3) \ldots(z-9)}$. Then $\int_{c} f(z) d z=$
(A) $\frac{-\pi \mathrm{i}}{9!}$
(B) $\frac{\pi i}{9!}$
(C) $\frac{-2 \pi i}{9!}$
(D) $\frac{2 \pi \mathrm{i}}{9!}$
22. The number of groups G such that $\left|\frac{G}{z(G)}\right|=119$, where $z(G)$ is the centre of G, is
(A) 1
(B) 0
(C) 2
(D) infinite
23. Let $\alpha=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$ and $\beta=\sin \frac{2 \pi}{5}$. Then the degree of the field $Q(\alpha)$ over $Q(\beta)$ is
(A) 1
(B) 2
(C) 4
(D) infinite
24. The order of Galois group of $x^{4}+x^{2}+1$ over Q is
(A) 1
(B) 3
(C) 2
(D) 5
25. Let F, K be fields such that $K \subseteq F$ and $u \in F$. If $[K(u): K]=5$ then $\left[K\left(u^{2}\right): K\right]=$
(A) 25
(B) 5
(C) 10
(D) 15
26. Consider $\mathbb{Z}[i]$ the ring of Gaussian integers and the maximal ideal $M=\{a+b i: 3|a, 3| b\}$ in $\mathbb{Z}[i]$. Then the order of the quotient ring $\frac{R}{M}$ is
(A) 3
(B) 5
(C) 7
(D) 9
27. A maximal ideal in $\mathbb{R}[x]$ among the following is
(A) $\left\langle\mathrm{x}^{4}+4\right\rangle$
(B) $\left\langle x^{3}+1\right\rangle$
(C) $\left\langle\mathrm{x}^{5}+1\right\rangle$
(D) $\left\langle x^{2}+2\right\rangle$
28. Let T be the Cantor's set in \mathbb{R}. Then which of the following is incorrect ?
(A) T is closed
(B) T is compact
(C) T is bounded
(D) T is connected
29. Consider the topology
$T=\{\phi, X,\{x\},\{z, w\},\{x, z, w\},\{y, z, w, u\}\}$
on $X=\{x, y, z, w, u\}$. Then the number of components of X is
(A) 1
(B) 2
(C) 3
(D) 4
30. Suppose X is a compact metric space. Then which of the following statements is not true ?
(A) X is separable
(B) X is closed
(C) X is sequentially compact
(D) X is not separable
31. If the complementary function of the differential equation $y^{\prime \prime}-y^{\prime}-6 y=0$ is $y_{c}=A e^{\alpha x}+B e^{\beta x}$, then $\alpha^{2} \beta^{2}=$
(A) 4
(B) 16
(C) 64
(D) 36
32. If the solution of the diferential equation $\left(D^{3}-D^{2}-4 D+4\right) y=e^{3 x}$ is $y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{-2 x}+K e^{3 x}$, then $K=$
(A) $\frac{1}{10}$
(B) $\frac{1}{5}$
(C) 5
(D) 10
33. If $y(0)=2, y^{\prime}(0)=-1$ and $\frac{d^{2} y}{d x^{2}}+y=0$, then $y=$
(A) $2 \sin x+\cos x$
(B) $2 \cos x+\sin x$
(C) $2 \cos x-\sin x$
(D) $2 \sin x-\cos x$
34. The general solution of the differential equation
$\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+x^{3} d z=0$ is
(A) $x^{2} z^{2}+y^{3}=c$
(B) $x^{2} z+y^{3}=c x$
(C) $x^{2} z+y^{3}=c$
(D) $x^{2} z^{2}+y^{3}=c x$
35. If $x^{2}+y^{2}+l z^{3}+m z^{2}+2=0$ is the surface that intersects the system of surfaces $z(x+y)=C(3 z+1)$ orthogonally and passes through the circle $x^{2}+y^{2}=1$, $z=1$ then $I+m=$
(A) 3
(B) -3
(C) 2
(D) -2
36. If $z=e^{y}, \frac{\partial z}{\partial x}=1$ when $x=0$, then the solution of $\frac{\partial^{2} z}{\partial x^{2}}+z=0$ is $z=$
(A) $\sin x+e^{y} \cos x$
(B) $e^{y} \sin x+\cos x$
(C) $\sin x \cos x+e^{y}$
(D) $\sin x \cos x-e^{y}$
37. The partial differential equation obtained by eliminating a, b from the equation $z=x y+y \sqrt{x^{2}-a^{2}-b^{2}}$ is
(A) $p x-q y=p q$
(B) $p x+q y+p q=0$
(C) $p x+q y=p q$
(D) $p x-q y+p q=0$
38. If a cubic polynomial $f(x)$ is such that $f(0)=1, f(1)=0, f(2)=1$ and $f(3)=10$, then $f(4)=$
(A) 43
(B) 33
(C) 23
(D) 13
39. With the standard notation $4 \mu^{2}-\delta^{2}=$
(A) 4
(B) 3
(C) 2
(D) 1

A

40. By dividing $[0,1]$ into 4 equal sub intervals, the value of $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}}$ (using trapezoidal rule) correct to 3 decimals is
(A) 0.693
(B) 0.694
(C) 0.697
(D) 0.699
41. $\int_{0}^{1}\left(y^{2}+\left(\frac{d y}{d x}\right)^{2}\right) d x$ along the path $y=x^{2}$ is
(A) $\frac{23}{15}$
(B) $\frac{18}{15}$
(C) $\frac{28}{15}$
(D) $\frac{33}{15}$
42. If the solution of
$u^{\prime}(x)+\int_{0}^{1} \exp (x-y) u(y) d y=f(x), u(0)=0$ is $u(x)=g(x)+\lambda\left(e^{x}-1\right) \int_{0}^{1} e^{-y} g(y) d y$ where $g(x)=\int_{0}^{x} f(t) d t$, then $\lambda=$
(A) $\frac{e}{1+e}$
(B) $1-\mathrm{e}$
(C) $\frac{-\mathrm{e}}{1+\mathrm{e}}$
(D) $\frac{1}{1-e}$
43. The resolvent kernel of
$\varphi(x)=f(x)+\int_{0}^{x}(x-t) \varphi(t) d t \quad(t<x) \quad$ is
(A) $\sinh (x-y)$
(B) $\sin (x-y)$
(C) $\cos (x-y)$
(D) $\cosh (x-y)$
44. Assume that a piston executes a simple harmonic motion with an amplitude 0.15 m . If it passes through the centre of its motion with a speed of $0.3 \mathrm{~m} / \mathrm{s}$ then the period of oscillation (in per seconds) is
(A) π
(B) 2π
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$
45. If $\vec{F}=\left(a x+b y^{2}\right) \vec{i}+c x y \vec{i}$ is conservative, then
(A) $a+b+c=0$
(B) $a^{2}=b c$
(C) $c=-2 b$
(D) $\mathrm{b}^{2}+\mathrm{c}^{2}=2 \mathrm{ab}$
46. An event A is independent of itself if and only if
(A) $\mathrm{P}(\mathrm{A})=0.5$
(B) $P(A)+P(\bar{A})=1$
(C) $P(A)=0$ or $P(A)=1$
(D) $P(A)=0.25$
47. Which of the following is not a property of a distribution function $\mathrm{F}(\mathrm{x})$ of a random variable X ?
(A) $\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$
(B) $F(x) \leq F(y)$ if $x<y$
(C) $F(-\infty)=0$ and $F(\infty)=1$
(D) $F(0)=\frac{1}{2}$
48. Let X be a random variable with mean μ and variance $\sigma^{2}>0$. Let $\mathrm{k}>0$ be fixed. Then which of the following is not correct ?
(A) $P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$
(B) $\mathrm{P}(|\mathrm{X}-\mu| \leq \mathrm{k} \sigma) \geq 1-\frac{1}{\mathrm{k}^{2}}$
(C) $P(|X-\mu| \geq k) \leq \frac{\sigma^{2}}{k^{2}}$
(D) $P(|X-\mu| \geq k) \leq \frac{1}{k^{2}}$
49. Let $\left\{x_{n}\right\}$ be a sequence of i.i.d. random variables with finite mean μ and finite variance. Consider the following two statements:
$\mathrm{P}: \frac{2}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i} \cdot \mathrm{x}_{\mathrm{i}} \xrightarrow{\mathrm{p}} \mu$;
$Q: \frac{6}{n(n+1)(2 n+1)} \sum_{i=1}^{n} \mathrm{i}^{2} x_{i} \xrightarrow{p} \mu$
then which of the following is true?
(A) Both P and Q are false
(B) Both P and Q are true
(C) P is true but Q is false
(D) P is false but Q is true
50. Let $\left\{x_{n}\right\}$ be a sequence of i.i.d. random variables with mean μ and finite variance. Let \bar{X}_{n} be the mean of the first n random variables. Now, consider the statement
$P: \frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sqrt{\bar{X}_{n}}} \xrightarrow{d} N(0,1)$
Then which of the following condition is necessary for P to be true?
(A) X_{1} follows Poisson $P(\mu)$
(B) X_{1} follows Binomial $B(k, \mu)$
(C) X_{1} follows Normal $N\left(\mu, \sigma^{2}\right)$
(D) X_{1} follows Normal $\mathrm{N}(\mu, 1)$
51. If Transition Probability Matrix (TPM) of a Markov chain (MC) is $P=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4}\end{array}\right]$, then its stationary distribution is given by
(A) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(B) $\left(\frac{3}{4}, \frac{1}{4}\right)$
(C) $\left(\frac{3}{5}, \frac{2}{5}\right)$
(D) $\left(\frac{4}{5}, \frac{1}{5}\right)$
52. If TPM of a $M C$ is $P=\left[\begin{array}{lll}0.1 & 0.2 & 0.7 \\ 0.2 & 0.2 & 0.6 \\ 0.6 & 0.1 & 0.3\end{array}\right]$, then $P\left(X_{3}=1 \mid X_{1}=0\right)$ is
(A) 0.26
(B) 0.17
(C) 0.14
(D) 0.13
53. Let X be normal $N\left(\mu, \sigma^{2}\right)$. Let I be the set of all integers. Then $P(X \in I)$ is equal to
(A) 1
(B) 0
(C) $\frac{1}{2}$
(D) $\frac{1}{\sqrt{2 \pi}}$
54. Let \bar{X} be the mean of n i.i.d. standard Cauchy random variables. Then \bar{X} is distributed as
(A) Standard normal
(B) Laplace
(C) Standard Cauchy
(D) Cauchy with scale parameter $\frac{1}{\sqrt{n}}$
55. The procedure of improving the efficiency of an unbiased estimator with the use of a sufficient statistic was invented by
(A) Lehmann
(B) Scheffe
(C) Cramer
(D) C.R. Rao
56. Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n drawn from uniform $\mathrm{U}(0, \theta)$ distribution. If $X_{(n)}$ is the largest observation in the sample, then which of the following is an unbiased estimator of θ ?
(A) Sample mean
(B) Sample median
(C) $X_{(n)}$
(D) $\frac{\mathrm{n}+1}{\mathrm{n}} \mathrm{X}_{(\mathrm{n})}$
57. The efficiency of sample mean as compared to sample median as estimator of the mean of a normal population in percentage is
(A) 64
(B) 157
(C) 317
(D) 31.5
58. A random sample of size 1 is taken from a p.d.f.
$f(x, \theta)=\frac{2(\theta-x)}{\theta^{2}}, 0<x<\theta ; f(0, \theta)=0$, elsewhere. The most powerful test of $H_{0}: \theta=\theta_{0}$ Vs $H_{1}: \theta=\theta_{1}, \theta_{1}<\theta_{0}$ at level α is given by
(A) $\phi(x)=1$ if $x>\theta_{0}[1-\sqrt{1-\alpha}]$
(B) $\phi(x)=1$ if $x<\theta_{0}[1-\sqrt{1-\alpha}]$
(C) $\phi(x)=1$ if $x>\theta_{0}^{\alpha}$
(D) $\phi(x)=1$ if $x<\theta_{0}^{\alpha}$
59. Let $X \sim N\left(\theta, \sigma^{2}\right)$. Which of the following is a simple hypothesis?
(A) $\mathrm{H}: \theta=\theta_{0}$
(B) $\mathrm{H}: \sigma=\sigma_{0}$
(C) $\mathrm{H}: \theta=\theta_{0}, \sigma=\sigma_{0}$
(D) $\mathrm{H}: \theta \neq \theta_{0}$
60. The mean of R in Runs test under H_{0} with usual notations is given by
(A) $\frac{2 m}{m+n}+1$
(B) $\frac{2 n}{m+n}+1$
(C) $\frac{2 m n}{m+n}$
(D) $\frac{2 m n}{m+n}+1$
61. The Gauss Markov theorem establishes that the G.L.S. estimator of $\beta, \hat{\beta}=\left(X^{1} V^{-1} X\right)^{-1} X^{1} V^{-1} Y$ is
(A) Unbiased estimator only
(B) Error free estimator
(C) Both (A) and (B)
(D) Best linear unbiased estimator
62. The log linear models are analogous to ANOVA models with
(A) Unequal number of observations
(B) Equal number of observations
(C) Multiple observations
(D) Both (A) and (B)
63. If $R_{1.23}=1$, then
(A) At least one regression residual is non-zero
(B) The multiple linear regression equation of X_{1} on X_{2} and X_{3} is considered as perfect for predictions
(C) All total correlations involving X_{1} are zero
(D) All partial correlations involving X_{1} are zero
64. In a logistic regression the S-shaped curve is not symmetrical about its
(A) Increase in point of inflection
(B) The curve increases rapidly
(C) The curve decreases
(D) Point of inflection
65. The independent variables in logistic regression are called as
(A) Variates
(B) Covariates
(C) Both (A) and (B)
(D) Logit
66. A square symmetric matrix A and its associated quadratic form is called positive definite if
(A) $x^{\prime} A x \leq 0$ for every ' x ' not equal to the null vector
(B) $x^{\prime} A x>0$ for every ' x ' not equal to the null vector
(C) $x^{\prime} A x<0$ for every ' x ' not equal to the null vector
(D) $x^{\prime} A x \geq 0$ for every ' x ' not equal to the null vector
67. If $A_{1}, A_{2}, \cdots, A_{q}$ are independently distributed with A_{i} distributed according to Wishart distribution $W\left(\Sigma, n_{i}\right)$ then $A=\sum_{i=1}^{q} A_{i}$ is distributed according to
(A) $W\left(\Sigma, \sum_{i=1}^{q} n_{i}\right)$
(B) $W\left(\Sigma, n_{i}\right)$
(C) $W\left(\Sigma^{-1}, \sum_{i=1}^{n} n_{i}\right)$
(D) $\mathrm{W}\left(\frac{1}{\Sigma}, \mathrm{n}_{\mathrm{i}}\right)$
68. Let A and Σ be partitioned into q and $p-q$ rows and columns

$$
A=\left(\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right) ; \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

If A is distributed according to Wishart distribution $W(\Sigma, n)$ then A_{11} is distributed according to
(A) $\mathrm{W}(\Sigma, \mathrm{n})$
(B) $W\left(\Sigma_{11}, n\right)$
(C) $W\left(\Sigma_{12}, n\right)$
(D) $W\left(\Sigma_{11}^{-1}, n\right)$
69. The function $a^{\prime} x$ is known as
(A) Multiple Discriminant Analysis
(B) Linear Logistic Regression
(C) Linear Discriminant Function
(D) Logistic Discrimination
70. If the entries in Rows of a Latin square are same as its columns, the Latin square is called
(A) Conjugate
(B) Self conjugate
(C) Orthogonal
(D) Symmetric
71. The method of confounding is a device to reduce the size of
(A) Experiments
(B) Replications
(C) Blocks
(D) All the above
72. The systematic sampling and S.R.S. shall give estimates of equal precisions if the inter class correlation between the units of the same systematic sample, from a population of size N and a sample of size n , is equal to
(A) $\frac{1}{\mathrm{~N}-\mathrm{n}}$
(B) $\frac{-1}{\mathrm{n}-1}$
(C) $\frac{-1}{\mathrm{~N}-\mathrm{n}}$
(D) $\frac{-1}{\mathrm{~N}-1}$
73. Suppose $f(x)$ is a density on $(0, \infty)$ with distribution function $f(x)$ which is DFR then the function $g(x)=\log f(x)$ is
(A) Convex
(B) Concave
(C) Constant
(D) The function value is 1
74. In which method we use the formula $\operatorname{Min}\left\{\mathrm{X}_{\mathrm{b}_{\mathrm{i}}}: \mathrm{X}_{\mathrm{b}_{\mathrm{i}}}<0\right\}$ to obtain the learning variable
(A) Dual Simplex
(B) Duality Problem
(C) Big M-method
(D) Simplex Method
75. If the arrival rate is 3 per hour and service rate is 6 per hour then the traffic intensity ρ equals to
(A) 6
(B) 3
(C) 2
(D) 0.5

Space for Rough Work

Space for Rough Work

Space for Rough Work

